简单介绍一下目前的相机种类,主要是对相机镜头按照焦距及视角的大小,可分为标准镜头、广角镜头和鱼眼镜头。他们的一些特点如下:
焦距:鱼眼镜头(小于等于16\(mm\))<广角镜头<普通标准镜头(50\(mm\))。
视场角:鱼眼镜头(接近或者大于180°,工程上大于140°的就算)>广角镜头>普通标准镜头。
畸变:鱼眼镜头>广角镜头>普通标准镜头。
一般常见的普通小孔成像相机的成像模型如下所示,小孔相机模型采用相似成像的方式(入射角和出射角等大),内参包括焦距\(f_x,f_y\)和主点偏差\(c_x,c_y\)。如果焦距一定,那么图像传感器像素平面的面积直接决定了相机视场角的大小,超过这个视场角范围的物体不会被镜头获取到。因此基于透镜成像原理的相机,视场角无法做到足够大,水平视场角一般小于140°。在某些时候,比如气象科学空间观测、太阳能辐射研究计算天空视角系数、安防视频监控等实际场景中可能会需要更大视场角的相机,那么这时候广角相机-鱼眼相机就出现了。
\[ r_d=f \cdot tan \theta \]
流程:首先用Kalman filtering 将GNSS和IMU融合到一起,如果轨迹足够准确,可以直接获得3D点云。也可以在后面加一个平差步骤,结合影像传感器的观测实现融合传感器定向,目的是:1)改正轨迹;2)传感器定向和标定;3)获取3D模型数据,e.g.点云。
需要有一些假设:通常假设轨迹误差是由于缓慢变化的 GNSS 误差或未补偿的惯性传感器漂移造成的,因此是低频的,而轨迹的较高频率分量相对准确。 实际上,校正要么与飞行几何相关联,作为每条带的固定偏移,要么建模为缓慢时变。 由于轨迹误差在带内也可能变化很大,因此这种调整在实践中通常需要高度灵活的校正模型,而这也是的模型有较高的过拟合风险,导致点云中出现全局的变形。
这些问题是的在传感器层级进行统一的误差建模的方法开始流形。
闭环的作用就不多说了,koide采用的闭环检测方法其实挺简单的,就是一般闭环检测的基础准则。